Âé¶ą´«Ă˝

SUBJECT

Title

Set theory (introductory)

Type of instruction

lecture

Level

master

Faculty

Part of degree program
Credits

2

Recommended in

Semesters 1-4

Typically offered in

Autumn/Spring semester

Course description

Naive and axiomatic set theory. Subset, union, intersection, power set. Pair, ordered pair, Cartesian product, function. Cardinals, their comparison. Equivalence theorem. Operations with sets and cardinals. Identities, monotonicity. Cantor’s theorem. Russell’s paradox. Examples.  Ordered sets, order types. Well ordered sets, ordinals. Examples. Segments. Ordinal comparison. Axiom of replacement. Successor, limit ordinals. Theorems on transfinite induction, recursion. Well ordering theorem. Trichotomy of cardinal comparison. Hamel basis, applications. Zorn lemma, Kuratowski lemma, TeichmĂĽller-Tukey lemma. Alephs, collapse of cardinal arithmetic. Cofinality. Hausdorff’s theorem.  KĹ‘nig inequality. Properties of the power function. Axiom of foundation, the cumulative hierarchy. Stationary set, Fodor’s theorem. Ramsey’s theorem, generalizations. The theorem of  de Bruijn and ErdĹ‘s. Delta systems.

Readings

A. Hajnal, P. Hamburger: Set Theory. Cambridge University Press, 1999.